Chapter 9	Responses to Periodic Inputs

9.1	Fourier Series
· 


The defining property of a periodic function  of period T is that f(t) =  where  is any integer. That is, the function repeats every period T.
· A remarkable theorem on periodic functions is Fourier’s theorem:

Statement	A periodic function can be expressed, in general, as an infinite series of cosine and sine functions:

		(9.1.1)




where  is a positive integer, and   and  are constants, known as Fourier coefficients, that depend on f(t).
· 
The component having  is the fundamental, whereas the component having k equal a particular integer n is the nth harmonic. The series expression of Equation 9.1.1 is the Fourier series expansion (FSE) of f(t).
· Combining the sine and cosine terms, the FSE becomes:

		(9.1.2)



where:			and		(9.1.3)

9.2	Fourier Analysis
Summary	Given the four functions cosm0t, sinm0t, cosn0t, and sinn0t, where m and n are integers, the integral of the product of any two of these functions over a period T = 2 /0 is zero, except the products cos2n0t, and sin2n0t, having m = n, in which case the integral is T/ 2:

		for all n and m	(9.2.1)


		for 	(9.2.2)


		(9.2.3)
· 
To determine  in the FSE, we integrate both sides of Equation 9.1.1 over a period:

	

	

or,		(9.2.4)
· 

 is the average of  over a period. It is the dc component of f(t), whereas the cosine and sine terms are the ac component.
· 

To determine  we multiply both sides of Equation 9.1.1 by  and integrate over a whole period, invoking Equations 9.2.1 to 9.2.3:

	


	This gives:

		(9.2.5)
· 

To determine  we multiply both sides of Equation 9.1.1 by  and integrate over a whole period, invoking Equations 9.2.1 to 9.2.3:

	


	This gives:

		(9.2.6)
Summary	a0 is the average of f(t) over a period, an is twice the average of f(t)cosn0t over a period, and bn is twice the average of f(t)sin0t over a period.

Example 9.2.1	FSE of Sawtooth Waveform
	It is required to derive the Fourier coefficients of the sawtooth waveform of Figure 9.2.1.


Solution: During the interval  

;


. . The FSE does not have any cosine terms for reasons that will be explained below.



 , where 0T = 2 . The trigonometric form of fst(t) is therefore:

		(9.2.7)


At the points of discontinuity, t = kT, where k is an integer. All the sinusoidal terms vanish and f(t) = A/2, the average of the values of  and .

Exponential Form
· 
The FSE can also be expressed in exponential form. It is convenient for this purpose to change the index  to n:

	

		(9.2.8)
· 


Let  Substituting for  and  from Equations 9.2.5 and 9.2.6:


		(9.2.9)
· 
It follows that:  and:




		(9.2.10)


where  is the complex conjugate of  Equation 9.2.8 can be expressed as:

	
· 
The last term on the RHS can be written in terms of negative values of  as:

		(9.2.11)
	Equation 9.2.11 can be expressed more compactly as:

		(9.2.12)
· 


The relationships between   and  readily follow from the definition of Cn:


		and		(9.2.13)


		and		(9.2.14)

where cn and  are as in Equation 9.1.3.

Frequency Spectrum
· 

The plots of  and against frequency are, respectively, the amplitude spectrum and the phase spectrum
of f(t). They both constitute the 
frequency spectrum of f(t).
· 

Because frequencies in the FSE have discrete values only, the frequency spectrum of a periodic function is a line spectrum that consists of a series of lines at , where  (Figure 9.2.2a).
· 




Since , it is seen that  and . The amplitude spectrum is an even function, whereas the phase spectrum is an odd function (Figure 9.2.2b), except when Cn is real, so bn = 0 and  is either zero or 180°.

Example 9.2.2	Exponential Form of Sawtooth Waveform
	It is required to derive the exponential Fourier coefficients of the sawtooth waveform of Figure 9.2.1 and plot its amplitude and phase spectra.


Solution: Integrating by parts (Appendix), noting that :

		(9.2.15)



	 is imaginary, which means that  (Equation 9.2.13). The average value of fst(t) is A/2, and cannot be obtained by setting  in Equation 9.2.15.The exponential form of fst(t) is:

		(9.2.16)


The amplitude spectrum consists of a line of height A /2 at  and lines of height  at 




; the phase angle of  is +90 for , and –90 for  (Figure 9.2.3).
	Cn can be 



obtained using MATLAB’s int(E,t,a,b) command. Ignoring for the moment , the integral  can be evaluated by entering the following code:
syms t n w
int(t*exp(-j*n*w*t),t,0,2*pi/w)
MATLAB returns a rather complicated expression. So enter: simplify(ans). MATLAB returns:
1/n^2/w^2*(2*i*exp(-2*i*pi*n)*n*pi+exp(-2*i*pi*n)-1)



Recognizing that 1 for all n, this expression simplifies to . Multiplying by  gives Equation 9.2.15.



	If the function  of Figure 9.2.1 is negated (Figure 9.2.4a), then shifted upward by A, it becomes the ‘reversed sawtooth’ waveform  of Figure 9.2.4b. The FSE of  is obtained by adding A to the negation of the RHS of Equation 9.2.7:

		(9.2.17)






	 of  is A /2 and its  is . The amplitude spectrum is unchanged, but the phase spectrum is negated. The derivation of the FSE of  from that of  illustrates a useful technique of deriving the FSE of a function from that of another function.

Example 9.2.3	FSE of Rectangular Pulse Train
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]	It is required to derive the Fourier coefficients of the rectangular pulse train fpt(t) illustrated in Figure 9.2.5 and plot its amplitude and phase spectra.

Solution: It is convenient to take a period that is symmetrical about the origin as shown. Hence,  in Equation 9.2.9, so that:









	(9.2.18)




where  When  is a nonzero integer, . However, according to L’Hopital’s rule, 





	Since  is real, , and the FSE of fpt(t) function does not have any sine terms. The reason for this is that the function is even, as explained in the next section. The average value of  is  However, it can be obtained in this case by setting  in Equation 9.2.18.


If we set  and replace  by 2:

		(9.2.19)

and		(9.2.20)



To express the FSE in trigonometric form, we substitute ,  and  in Equation 9.1.1:

		(9.2.21)





	The amplitude spectrum is shown in Figure 9.2.6(a) for the case of  so that  for all integer values of  The amplitude is zero for  an integral multiple of  The lines are bounded by the dotted envelope representing the 



function  for continuous . The
phase spectrum is shown in Figure 9.2.6b. 

Since  is real, its phase angle is either



zero (), or (). The
phase angle is zero when n = 0, 
since C0 is positive, and is

not defined if , as when n 
=  5, because the
phase angle can be zero or 180 when
the magnitude is zero.


It can be readily verified that  if , where  is a 











positive (nonzero), odd integer, then  and . On the other hand, if  is a positive, even integer,  and  Thus, if  for  If  for , etc.
	If   is small, it is seen from Equation 9.2.19 that all the harmonics have the same amplitudeA. This is an important result in signal analysis, according to which, the narrower the pulses, the more significant are the higher harmonics (Section 16.6).
	To determine Cn using MATLAB’s int(E, t, a, b) command, we enter the following:
syms t n w a
int(exp(-j*n*w*t),t,-a/2,a/2)
simplify(ans)

MATLAB returns: 2*sin(1/2*n*w*a)/n/w. Multiplying this by  gives Equation 9.2.18.
	We can deduce from Equation 9.2.21 









the FSE of a square wave of amplitude  and zero average value (Figure 9.2.7). To do so, we set   and remove the dc value by subtracting  from  Noting that  for even 

		(9.2.22)

Translation in Time
· 




If a periodic waveform  is delayed by  it becomes  with respect to the same time origin. Replacing  by  in Equation 9.2.12:

		(9.2.23)
· 



The effect is to replace  by  The magnitude of  and hence the amplitude spectrum, remains unchanged. However, the new phase angle  is:

		(9.2.24)
· 


Conversely, if the function is advanced by   is replaced by 

Example 9.2.4	Translation in Time of Square Wave
	It is required to derive the FSE of the square wave (Figure 9.2.7) when delayed, or advanced, by T /4.
Solution: Since td = T /4, n0td = n0T/4 = n/2. If the function is delayed by T/4 Figure 9.2.4, the phase angle of each of the terms in Equation 9.2.22 is decreased by n/2:


		(9.2.25)
If the square wave of Figure 9.2.7 is advanced by T /4, it becomes the negation of Figure 9.2.8, so that:

		(9.2.26)
9.3	Symmetry Properties of Fourier Series
Even-Function Symmetry
Concept	The FSE of an even periodic function does not contain any sine terms; its Fourier coefficients can be evaluated over half a period.
· The reason is that, since the sine function is odd, the presence of sine terms introduces odd components in the function and destroys its even symmetry.
· Examples of even functions are the rectangular pulse train (Figure 9.2.5) and the square pulse of Figure 9.2.7. The corresponding FSEs (Equations 9.2.21 and 9.2.22) do not have any sine terms.
· If the FSE of an even periodic function does not contain any sine terms, then bn = 0 and Cn is real. Since a period of an even periodic function is centered about the vertical axis, Cn can be expressed as:

		(9.3.1)



	If we substitute  in the first integral in brackets, this integral becomes . Changing the dummy integration variable back to t and invoking the property of an even function that f(t) = f(-t), the integral becomes . Substituting in Equation 9.3.1, combining with the second integral, and m

aking use of the relation , we obtain:


	= 	(9.3.2)
· It follows that for an even function:



		,	and	 for all n	(9.3.3)

Odd-Function Symmetry.
Concept	The FSE of an odd periodic function does not contain an average term nor any cosine terms; its Fourier coefficients can be evaluated over half a period. 
· The reason that the FSE of an odd periodic function does not contain an average term nor any cosine terms is that these terms, being even, introduce even 
components and destroy the odd symmetry of the function.
· An example of an odd function is the square wave of Figure 9.3.1. The FSE (Equation 9.3.1) consists of sine terms only.
· A function that appears to be neither odd nor even can become odd when the dc component is removed. An example is the sawtooth waveforms of Figs. 9.2.1 and 9.2.4. If the dc component A/2 is subtracted, the function becomes odd. Hence, a function can have an odd ac component but is not odd because of a dc component.
· If the FSE of an odd periodic function does not contain any cosine terms, an = 0 and Cn is imaginary. Pursuing an argument analogous to that above for an even function, it follows that for an odd periodic function:



	,	and	= 	(9.3.4)


or, 	 for all n,	and		(9.3.5)

Half-Wave Symmetry
· 
A periodic function has half-wave symmetry if:


	,	or		(9.3.6)
Concept	The FSE of a half-wave symmetric periodic function does not contain an average term nor any even harmonics; its Fourier coefficients can be evaluated over half a period. Thus:

	,	for n odd

and	,	for n even or zero	(9.3.7)
· 










To prove this property, we express Cn as:  . Substituting  the second integral becomes: . Changing the dummy variable  back to , invoking the half-symmetry property, and substituting , the integral becomes: . But  for odd  and  for 

even or zero. Equations 9.3.7 then follow.
· In terms of the coefficients a and b of the trigonometric form:


,  for n even, and:


	,		for n odd	(9.3.8)
· The square wave of Figure 9.2.7 is both even and half-wave symmetric; its FSE (Equation 9.2.22) consists of odd cosine terms only. The square wave of Figure 9.2.8 is both odd and half-wave symmetric; its FSE (Equation 9.2.25) consists of odd sine terms only. The waveform of Figure 9.3.1 is half-wave symmetric but is neither odd nor even.

Quarter-Wave Symmetry
· A half-wave symmetric function that is also symmetrical about a vertical line through the middle of the positive or negative half cycles is said to possess quarter-wave symmetry. Such a function can always be made either odd or even by translating it in time. The square waves of Figs. 9.2.7 and 9.2.8 are examples.
· The FSE of an odd, quarter-wave symmetric function consists of odd sine terms only, so that:



	,	 for all n,	 for even n
· bn for odd n need only be evaluated over a quarter period, from t = 0 to = t = T/4:

	 for odd n	(9.3.9)
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]This is because both f(t) and sinn0t, with n odd, are symmetrical about the middle of the half-cycle from t = 0 to t = T/2.
· Similarly, the FSE of an even, quarter-wave symmetric function consists of odd cosine terms only, so that:



	,	 for all n,	 for even n
· an for odd n need be evaluated over a quarter period only:

		 for odd n	(9.3.10)
Again, this because both f(t) and cosn0t, with n odd, are symmetrical about the 
middle of the half-cycle from t = 0 to = t = T/2.

Table 9.3.1 Summary of Symmetry Properties of Periodic functions
	Type of Symmetry
	bn
	an
	a0

	Neither odd nor even
	

	

	


	Even
	0
	

	


	Odd
	
 
	0
	0

	Half-wave Symmetry
	Neither odd nor
Even
	

 n odd, 0 for n even
	

 n odd, 0 for n even
	0

	
	Quarter-wave Symmetry
	Even
	0
	

 n odd, 0 for n even
	

	
	
	Odd
	

n odd, 0 for n even
	0
	



Example 9.3.1	FSE of Triangular Waveform
	It is required to determine the FSE of the triangular waveform of Figure 9.3.2.
Solution: The function has zero average, is even, and possesses half-wave symmetry. It is also quarter-wave symmetric. Its FSE must contain odd cosine terms only. Over the 


interval   It follows from Equation 9.3.10 that:

	= 

		(9.3.11)
where using the exponential form makes the integration by parts somewhat simpler. It 



follows that . In evaluating this expression, even values of n should not be used, because in applying Equation 9.3.11, we have already restricted n to be odd on account of half-wave symmetry. Hence,


		where  is odd	(9.3.12)

	The FSE of  is therefore:

		(9.3.13)

9.4	Derivation of FSEs from those of Other Functions
Addition/Subtraction/Multiplication.
Concept	The FSEs of some functions can be derived from FSEs of other functions having the same period, through addition, subtraction, or multiplication.


Example 9.4.1	FSE of Half-Wave Rectified Waveform






It is required to determine the FSE of: (a) the half-wave rectified waveform of Figure 9.4.1a; and (b) the full-wave rectified waveform of Figure 9.4.1b.

Solution: (a) The given half-wave rectified waveform can be considered to be the product of a cosine function of amplitude  

and a square pulse train of unity amplitude, both functions having the same period  (Figure 9.4.2). The FSE of the pulse train is that of Equation 9.2.21, with A = 1 and 

 The FSE of the cosine function is the function itself. Hence:






	

	

	, n = 1, 2, 3, …	(9.4.1)
	The FSE contains a dc component of A /, a fundamental component A /2, and even harmonics as cosine terms, as to be expected of an even function.



(b) The FSE of the full-wave rectified waveform of Figure 9.4.1b may be derived by considering it as the sum of a half-wave rectified waveform of amplitude  and the function . When is added to the RHS of Equation 9.4.1 multiplied by 2, the 0t term cancels out, giving the FSE for full-wave rectified waveform:

	ffw(t) ,
	n = 1, 2, 3, …	(9.4.2)


Note that the lowest allowed angular frequency is.The FSE could be expresses in terms of . The ac component of the FSE then consists of a 

fundamental of frequency  and odd and even harmonic of this frequency.

The full-wave rectified waveform could also be considered as: i) the sum of two half-wave rectified waveforms, with one waveform shifted by half a period with respect to the other waveform; ii) the product of a square wave of zero average and 




Differentiation/Integration.
Concept	The FSE of a given periodic function can be differentiated, or integrated, term by term. The result is the FSE of a periodic function that is the derivative, or integral, of the given function, except that integrating the dc component destroys the periodicity of the function.
· This follows from differentiating, or integrating, both sides of the FSE.
· When a periodic function having a dc component is differentiated, the dc component vanishes and the resulting function is periodic with zero average. But when a periodic function having a dc component is integrated, the integral of the dc component increases linearly with time, which destroys the periodicity of the function, although the integral of the original ac component is still periodic.

Example 9.4.2	Integral of FSE 
	It is desired to obtain the FSE of the triangular waveform as the integral of the square waveform.
Solution: Consider the delayed square waveform of Figure 9.2.8, whose FSE is given by Equation 9.2.25. Integrating this FSE gives:

		(9.4.3)



where the constant of integration is the average value of the function. The RHS of Equation 9.4.3, with  is identical with  (Equation 9.3.13), bearing in mind that the peak-to-peak amplitude of the triangular wave equals the area under one half-cycle of the square 


wave. Thus,  Hence,  as in Equation 9.3.13.

Rate of Attenuation of Harmonics
· The more rapidly the magnitudes of the harmonics decrease with the order of the harmonic, the fewer are the number of terms of the FSE that have to be included to obtain a given degree of accuracy. The rate of attenuation of harmonics is related to the degree of ‘smoothness’ of the function:
Concept	The smoother the function, the more rapidly the harmonics decrease in magnitude.
· The smoothness of a function depends on the continuity of the function and its higher derivatives: If the mth derivative of a periodic function is discontinuous, with all the 


derivatives of lower order being continuous, the magnitudes of the harmonics decrease approximately as   the derivative of order 0 being the function itself.
· This is exactly true of the square and triangular waveforms. It is approximately true of the pulse train, the half-wave and full-wave rectified waveforms.

9.6	Circuit Responses to Periodic Functions
Concept	The steady-state response of an LTI circuit to a periodic signal is the sum of the responses to each component acting alone.
· 
Let in Figure 9.6.1 be a general periodic function of the form of Equation 9.1.2:

		(9.6.1)
· Since the ac components of the input are sinusoids, the steady-state output due to each of these components can be determined by phasor analysis. For the nth harmonic, we have, from voltage division:


		(9.6.2)
· 
For 0 = 0, the circuit is a simple voltage divider, and . The nth 
· 

harmonic in the output has a magnitude that is  that of the corresponding input component and lags this component by  The FSE of the output is therefore:

[bookmark: _GoBack]	

		(9.6.3)

Example 9.6.1	FSE of Response of RC Circuit to a Square Wave Input
	The square wave of Figure 9.2.8 is applied to the RC circuit of Figure 9.6.2. It is required to determine the output vO.







Solution: The FSE of the input voltage is given by Equation 9.2.26, with  replaced by . According to Equation (9.5.2), with  and  the nth harmonic in the output has a magnitude that is  that of the corresponding input component and lags this component by  The FSE of the output can therefore be expressed as:


			(9.6.4)

9.7 Average Power and rms Values
Concept	In an LTI circuit, components of different frequencies do not interact, and the total average power is the sum of the average powers due to each component acting alone.
· 
To justify this, consider a periodic input voltage  of the form:

		(9.7.1)

to be applied to two terminals of an LTI circuit. The input current  at these terminals is also periodic, of the same frequency, and can be expressed as:

		(9.7.2)
· The average power input to the circuit is:

		(9.7.3)
· 
According to Equations 9.2.1 to 9.2.3, the product terms involving trigonometric functions evaluate to zero over T, except those having the same  Thus:


	 

		(9.7.4)
· The integral of the second term in the integrand vanishes over a period T, so that:

		(9.7.5)
· It is seen from Equation 9.7.5 that the average power is due only to components of voltage and current of the same frequency. The average power of each frequency component is given by the product of the rms voltage, the rms current, and the power factor cos(vn – in), as in Equation 7.1.10.
·  Components of different frequencies do not contribute to the average power. They do contribute to the instantaneous power, as does the component of frequency 2n0 in Equation 9.7.4, causing a net power flow in or out of the circuit at any instant. However, this power averages to zero over a complete cycle, leaving only the contribution from components having the same frequency.

rms Value
· 

By definition,  the rms value of  is given by:

		(9.7.6)
· 
Assuming  to be given by Equation 9.1.2, and again using Equations 9.2.1 to 9.2.3, it follows that:

	


	

	


or		(9.7.7)
· According to Equation 9.7.7, the rms value of a periodic function is the square root of 
the sum of the squares of the rms values of the individual components.
· 
In terms of  and b coefficients (Equation 9.1.3), Equation 9.7.7 becomes:


		(9.7.8)
· 





If a periodic voltage  is applied across a resistor  the rms current component  corresponding to a voltage component  is  With , It follows from Equation 9.7.5 that:

		(9.7.9)

and,		(9.7.10)
· 
If a periodic waveform  is expressed analytically, it is usually much simpler to determine its rms value from direct application of Equation 9.7.6 rather than from its Fourier coefficients (Eq. 9.7.7).
· 




In the case of the half-wave rectified waveform of Figure 9.4.1a, the mean of its square over a period is:  Hence, the rms value is  The dc component is  (Eq. (9.4.1)). It follows from Eq. (9.7.7) that:  This gives for the ac component of the half-wave rectified waveform:  0.39A.

Example 9.7.1	rms Value of Periodic Triangular Waveform

	It is required to determine the rms value of the periodic triangular waveform  shown in Figure 9.7.1 and deduce the rms value of the ac component.


Solution: For   The 

square of this waveform is  and the area under the curve is:

			(9.7.11)











	For  the area under the curve of the squared function is clearly the same as that for  in Figure 9.7.2. By analogy with Eq. (9.7.23), the area under the square function is , . The total squared area for one period of  is the sum  The mean is  and the rms value is  Because it is independent of , this result applies to any triangular waveform that varies between  and  and repeats continuously without interruption, including a sawtooth waveform 






	The dc, or average value of  is  If the rms value of the ac component is denoted by  then  This gives  

1

9-21/21
image2.wmf
),

(

nT

t

f

+


oleObject46.bin

image48.wmf
k


oleObject47.bin

image49.wmf
å

ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

+

=

¥

=

-

-

1

0

2

2

)

(

0

0

0

0

n

t

jn

t

jn

n

t

jn

t

jn

n

j

e

e

b

e

e

a

a

t

f

w

w

w

w


oleObject48.bin

image50.wmf
å

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

+

+

÷

ø

ö

ç

è

æ

-

+

=

¥

=

-

1

0

0

0

 

2

 

2

n

t

jn

n

n

t

jn

n

n

e

jb

a

e

jb

a

a

w

w


oleObject49.bin

image51.wmf
(

)

.

 

2

1

n

n

n

jb

a

C

-

=


oleObject50.bin

image52.wmf
n

a


oleObject2.bin

oleObject51.bin

image53.wmf
n

b


oleObject52.bin

image54.wmf
(

)

ò

+

-

=

T

t

t

o

n

dt

t

n

j

t

n

t

f

T

C

0

0

 

 

0

sin

cos

)

(

1

w

w


oleObject53.bin

image55.wmf
ò

+

-

=

T

t

t

t

jn

dt

e

t

f

T

0

0

0

 

 

)

(

1

w


oleObject54.bin

image56.wmf
,

 

)

(

1

0

 

 

0

0

0

a

dt

t

f

T

C

T

t

t

=

=

ò

+


oleObject55.bin

image57.wmf
(

)

=

+

=

*

n

n

n

jb

a

C

2

1


image3.wmf
n


oleObject56.bin

image58.wmf
(

)

ò

+

+

T

t

t

o

dt

t

n

j

t

n

t

f

T

0

0

 

 

0

sin

cos

)

(

1

w

w


oleObject57.bin

image59.wmf
n

T

t

t

t

jn

C

dt

e

t

f

T

-

+

=

=

ò

0

0

0

 

 

 

 

)

(

1

w


oleObject58.bin

image60.wmf
*

n

C


oleObject59.bin

image61.wmf
.

n

C


oleObject60.bin

image62.wmf
å

å

+

+

=

¥

=

-

-

¥

=

1

1

0

0

0

)

(

n

t

jn

n

n

t

jn

n

e

C

e

C

C

t

f

w

w


oleObject3.bin

oleObject61.bin

image63.wmf
n


oleObject62.bin

image64.wmf
å

å

+

+

=

-¥

-

=

¥

=

1

1

0

0

0

)

(

n

t

jn

n

n

t

jn

n

e

C

e

C

C

t

f

w

w


oleObject63.bin

image65.wmf
å

=

¥

-¥

=

n

t

jn

n

e

C

t

f

0

)

(

w


oleObject64.bin

image66.wmf
,

n

C


oleObject65.bin

image67.wmf
,

n

a


image4.wmf
)

(

t

f


oleObject66.bin

image68.wmf
n

b


oleObject67.bin

image69.wmf
),

Re(

 

2

n

n

C

a

=


oleObject68.bin

image70.wmf
)

Im(

 

2

n

n

C

b

-

=


oleObject69.bin

image71.emf
DC component

|C

n

|



/



0

Fundamental of     

frequency 



0

Harmonics

(a)

0

1 -1

2

3 4 -2

-3

-4


image72.wmf
,

2

2

2

2

2

n

n

n

n

n

n

c

b

a

jb

a

C

=

+

=

-

=


oleObject70.bin

oleObject4.bin

image73.wmf
n

n

n

n

a

b

C

q

=

-

=

Ð

1

-

tan


oleObject71.bin

image74.wmf
n

q


oleObject72.bin

image75.wmf
n

C


oleObject73.bin

image76.wmf
n

q


oleObject74.bin

image77.emf


n



/



0

Figure 9.2.2

(b)

1

2

3 4

-1

-2

-3

-4


image78.wmf
0

w

w

n

=


image5.wmf
(

)

å

+

+

=

¥

=

1

0

0

0

sin

cos

)

(

k

k

k

t

k

b

t

k

a

a

t

f

w

w


oleObject75.bin

image79.wmf
3,...

 

2,

 

 

,

1

 

,

0

±

±

±

=

n


oleObject76.bin

image80.wmf
*

-

=

n

n

C

C


oleObject77.bin

image81.wmf
n

n

C

C

-

=


oleObject78.bin

image82.wmf
n

n

n

a

b

C

1

tan

-

-

=

Ð


oleObject79.bin

image83.wmf
n

C

-

-Ð

=


oleObject5.bin

oleObject80.bin

image84.wmf
n

q


oleObject81.bin

image85.wmf
.

dt

te

T

A

T

C

T

t

jn

n

ò

-

=

 

0

 

0

1

w


oleObject82.bin

image86.wmf
p

w

2

0

=

T


oleObject83.bin

image87.wmf
[

]

[

]

n

A

j

n

j

n

A

e

te

jn

n

T

A

C

t

jn

t

jn

n

p

p

p

w

w

w

p

w

w

2

2

4

2

2

/

2

0

0

2

0

2

2

0

0

0

=

-

-

=

-

-

-

=

-

-


oleObject84.bin

image88.wmf
n

C


image6.wmf
k


oleObject85.bin

image89.wmf
0

=

n

a


oleObject86.bin

image90.wmf
0

=

n


oleObject87.bin

image91.wmf
å

¥

¹

-¥

=

+

=

0

0

2

2

)

(

n

n

t

jn

st

e

n

j

A

A

t

f

w

p


oleObject88.bin

image92.emf
|C

n

|



/



o

A /2

(a)

0

1

2

3

4

-1

-2

-3

-4

A / 2



A / 4



A / 6



A / 8




image93.wmf
0

=

w


oleObject89.bin

oleObject6.bin

image94.wmf
n

A

C

n

p

2

=


oleObject90.bin

image95.emf
(b)



/



o



n

90°

Figure 9.2.3

0

1

2

3

4

-90°

-1

-2 -3 -4


image96.wmf
n

±

=

0

w

w


oleObject91.bin

oleObject92.bin

image97.wmf
0

>

n


oleObject93.bin

image98.wmf
0

<

n


oleObject94.bin

image7.wmf
,

0

a


image99.wmf
2

T

A


oleObject95.bin

image100.wmf
ò

-

T

t

jn

dt

te

 

0

 

0

w


oleObject96.bin

image101.wmf
=

-

n

j

e

p

2


oleObject97.bin

image102.wmf
2

2

2

w

n

n

j

p


oleObject98.bin

image103.wmf
2

T

A


oleObject99.bin

oleObject7.bin

image104.emf
- f

st

(t)

t

-A

(a)

f

str

(t)

t

A

(b)

T 2T

T 2T

-T

-T

Figure 9.2.4


image105.wmf
)

(

t

f

st


oleObject100.bin

image106.wmf
)

(

t

f

str


oleObject101.bin

oleObject102.bin

image107.wmf
å

+

=

¥

=

1

0

sin

2

)

(

n

str

n

t

n

A

A

t

f

w

p


oleObject103.bin

image108.wmf
0

C

¢


oleObject104.bin

image8.wmf
,

k

a


oleObject105.bin

image109.wmf
n

C

¢


oleObject106.bin

image110.wmf
n

A

j

p

2

-


oleObject107.bin

image111.wmf
)

(

t

f

str


oleObject108.bin

image112.wmf
)

(

t

f

st


oleObject109.bin

image113.wmf
2

/

0

T

t

-

=


oleObject8.bin

oleObject110.bin

image114.emf
 

Figure 9.2.5

f

pt

(t)

t

A

-T

T

T

-T/2 T/2

-



/2



/2 T –



/2

T 

+



/2


image115.wmf
=

=

ò

-

-

2

/

2

/

0

)

(

1

T

T

t

jn

n

dt

e

t

f

T

C

w


oleObject111.bin

image116.wmf
=

ò

-

-

2

/

2

/

0

1

t

t

w

dt

Ae

T

t

jn


oleObject112.bin

image117.wmf
=

ú

û

ù

ê

ë

é

-

-

-

2

/

2

/

0

0

t

t

w

w

jn

e

T

A

t

jn


oleObject113.bin

image118.wmf
=

÷

÷

ø

ö

ç

ç

è

æ

-

-

j

e

e

T

n

A

jn

jn

2

/

2

/

0

0

0

t

w

t

w

w


oleObject114.bin

image9.wmf
k

b


image119.wmf
)

2

/

sinc(

)

2

/

(

)

2

/

sin(

)

2

/

sin(

2

0

0

0

0

0

t

w

t

t

w

t

w

t

t

w

w

n

T

A

n

n

T

A

n

T

n

A

=

=


oleObject115.bin

image120.wmf
.

sin

)

sinc(

x

x

x

=


oleObject116.bin

image121.wmf
n


oleObject117.bin

image122.wmf
0

sin

)

sinc(

=

=

p

p

p

n

n

n


oleObject118.bin

image123.wmf
1.

)

0

sinc(

=


oleObject119.bin

oleObject9.bin

image124.wmf
n

C


oleObject120.bin

image125.wmf
0

=

n

b


oleObject121.bin

image126.wmf
)

(

t

f

pt


oleObject122.bin

image127.wmf
.

T

A

t


oleObject123.bin

image128.wmf
0

=

n


oleObject124.bin

image10.wmf
1

=

k


image129.wmf
a

t

=

T


oleObject125.bin

image130.wmf
T

0

w


oleObject126.bin

image131.wmf
)

sin(

)

sinc(

p

a

p

p

a

a

n

n

A

n

A

C

n

=

=


oleObject127.bin

image132.wmf
å

¥

-¥

=

=

n

t

jn

pt

e

n

A

t

f

0

)

(

sinc

)

(

w

p

a

a


oleObject128.bin

image133.wmf
A

C

a

a

=

=

0

0


oleObject129.bin

oleObject10.bin

image134.wmf
,

C

a

n

n

2

=


oleObject130.bin

image135.wmf
0

=

n

b


oleObject131.bin

image136.wmf
ú

û

ù

ê

ë

é

+

+

+

+

=

...

t

t

t

A

A

t

f

pt

0

0

0

cos3

3

sin3

cos2

2

sin2

cos

sin

2

)

(

w

ap

w

ap

w

ap

p

a


oleObject132.bin

image137.wmf
,

/

5

1

=

a


oleObject133.bin

image138.wmf
|

)

5

sinc(

5

|

p

n

A

C

n

=


oleObject134.bin

image11.wmf
(

)

å

+

+

=

¥

=

1

0

0

cos

)

(

k

k

k

t

k

c

c

t

f

q

w


image139.wmf
.

n

0

w

w

=


oleObject135.bin

image140.wmf
n


oleObject136.bin

image141.wmf
.

5


oleObject137.bin

image142.emf
 

0

2

4

6 8 10 -2 -4 -6

-8

-10

|C

n

|













5

sinc

5



n A

n

(a)

A/5

0

2 4 6 8 10 -2 -4 -6 -8 -10

n

(b)



n

180°

Figure 9.2.6


image143.wmf
)

5

sinc(

5

p

n

A


oleObject138.bin

image144.wmf
n


oleObject11.bin

oleObject139.bin

image145.wmf
n

C


oleObject140.bin

image146.wmf
0

>

n

C


oleObject141.bin

image147.wmf
o

180


oleObject142.bin

image148.wmf
0

<

n

C


oleObject143.bin

image149.wmf
0

=

n

C


image12.wmf
,

0

0

a

c

=


oleObject144.bin

image150.wmf
m

n

m

<

<

5

1)

-

(


oleObject145.bin

image151.wmf
m


oleObject146.bin

image152.wmf
,

/

n

/

n

0

5

)

5

sin(

>

p

p


oleObject147.bin

image153.wmf
0

=

n

q


oleObject148.bin

oleObject149.bin

oleObject12.bin

image154.wmf
,

0

5

/

)

5

/

sin(

<

p

p

n

n


oleObject150.bin

image155.wmf
.

n

o

180

=

q


oleObject151.bin

image156.wmf
,

m

1

=


oleObject152.bin

image157.wmf
0

=

n

q


oleObject153.bin

image158.wmf
4.

  

3,

  

2,

  

1

±

±

±

±

=

,

n


oleObject154.bin

image13.wmf
,

2

2

k

k

k

b

a

c

+

=


image159.wmf
,

m

2

=


oleObject155.bin

image160.wmf
o

180

=

n

q


oleObject156.bin

image161.wmf
9

  

8,

  

7,

  

,

6

±

±

±

±

=

n


oleObject157.bin

image162.emf
f

sq

(t)

t

A

m

-A

m

T

-T/2

T/2

-T/4

T/4

Figure 9.2.7


image163.wmf
T

A


oleObject158.bin

image164.wmf
)

(

t

f


oleObject13.bin

oleObject159.bin

image165.wmf
m

A


oleObject160.bin

image166.wmf
,

2

1

=

a


oleObject161.bin

image167.wmf
,

A

A

m

2

=


oleObject162.bin

image168.wmf
2

A


oleObject163.bin

image169.wmf
).

(

t

f


image14.wmf
k

k

k

a

b

1

-

tan

-

=

q


oleObject164.bin

image170.wmf
0

)

2

sin(

=

/

n

p


oleObject165.bin

image171.wmf
:

n


oleObject166.bin

image172.wmf
ú

û

ù

ê

ë

é

+

-

+

-

=

...

t

t

t

t

A

t

f

m

sq

0

0

0

0

cos7

7

1

5

cos

5

1

cos3

3

1

cos

4

)

(

w

w

w

w

p


oleObject167.bin

image173.wmf
)

(

t

f


oleObject168.bin

image174.wmf
,

d

t


oleObject14.bin

oleObject169.bin

image175.wmf
)

(

d

t

t

f

-


oleObject170.bin

image176.wmf
t


oleObject171.bin

image177.wmf
)

(

d

t

t

-


oleObject172.bin

image178.wmf
[

]

å

=

å

=

-

¥

-¥

=

-

¥

-¥

=

-

n

t

jn

t

jn

n

n

t

t

jn

n

d

e

e

C

e

C

t

t

f

d

d

0

0

0

 

)

(

)

(

w

w

w


oleObject173.bin

image179.wmf
n

C


image15.wmf
0

 

sin

 

cos

0

0

 

 

0

0

=

ò

+

dt

t

m

t

n

T

t

t

w

w


oleObject174.bin

image180.wmf
.

0

d

t

jn

n

e

C

w

-


oleObject175.bin

image181.wmf
,

n

C


oleObject176.bin

image182.wmf
n

q

¢


oleObject177.bin

image183.wmf
d

n

n

t

n

0

w

q

q

-

=

¢


oleObject178.bin

image184.wmf
,

d

t


oleObject15.bin

oleObject179.bin

image185.wmf
n

C


oleObject180.bin

image186.wmf
.

0

d

t

jn

n

e

C

w

+


oleObject181.bin

image187.emf
F

sqd

(t)

t

A

m

-A

m

T

T/2

-T/2

Figure 9.2.8


image188.wmf
ú

û

ù

ê

ë

é

+

÷

ø

ö

ç

è

æ

-

-

÷

ø

ö

ç

è

æ

-

+

÷

ø

ö

ç

è

æ

-

-

÷

ø

ö

ç

è

æ

-

=

...

2

7

7

cos

7

1

2

5

5

cos

5

1

2

3

3

cos

3

1

2

cos

4

)

(

0

0

0

0

p

w

p

w

p

w

p

w

p

t

t

t

t

A

t

f

m

sqd


oleObject182.bin

image189.wmf
ú

û

ù

ê

ë

é

+

+

+

=

...

sin5

5

1

sin3

3

1

sin

4

)

(

0

0

0

t

t

t

A

t

f

m

sqd

w

w

w

p


oleObject183.bin

image16.wmf
dt

t

m

t

n

dt

t

m

t

n

T

t

t

T

t

t

 

sin

 

sin

0

 

cos

 

cos

0

0

 

 

0

0

 

 

0

0

0

0

w

w

w

w

ò

ò

+

+

=

=


image190.wmf
ú

û

ù

ê

ë

é

+

+

+

-

=

...

t

t

t

A

t

f

m

sqa

0

0

0

sin5

5

1

sin3

3

1

sin

4

)

(

w

w

w

p


oleObject184.bin

image191.wmf
ú

û

ù

ê

ë

é

+

=

=

ò

ò

ò

-

-

-

-

-

2

/

 

0

0

 

2

/

2

/

 

2

/

0

0

0

)

(

)

(

1

)

(

1

T

t

jn

T

t

jn

T

T

t

jn

n

dt

e

t

f

dt

e

t

f

T

dt

e

t

f

T

C

w

w

w


oleObject185.bin

image192.wmf
t

t

¢

-

=


oleObject186.bin

image193.wmf
ò

ò

¢

¢

=

¢

-

¢

¢

¢

2

/

 

0

0

 

2

/

0

0

)

(-

)

(

)

(-

T

t

jn

T

t

jn

t

d

e

t

f

t

d

e

t

f

w

w


oleObject187.bin

image194.wmf
ò

2

/

 

0

0

)

(

T

t

jn

dt

e

t

f

w


oleObject188.bin

oleObject16.bin

image195.wmf
t

n

e

e

t

jn

t

jn

0

cos

2

0

0

w

w

w

=

+

-


oleObject189.bin

image196.wmf
ò

=

2

/

 

0

0

cos

)

(

2

T

n

tdt

n

t

f

T

C

w


oleObject190.bin

image197.wmf
ú

û

ù

ê

ë

é

ò

-

2

/

0

0

)

(

Re

2

T

t

jn

dt

e

t

f

T

w


oleObject191.bin

image198.wmf
ò

=

2

/

 

0

0

)

(

2

T

dt

t

f

T

a


oleObject192.bin

image199.wmf
ò

=

2

/

 

0

0

cos

)

(

4

T

n

tdt

n

t

f

T

a

w


oleObject193.bin

image17.wmf
m

n

¹


image200.wmf
0

=

n

b


oleObject194.bin

image201.wmf
0

0

=

C


oleObject195.bin

image202.wmf
ò

-

=

2

/

 

0

0

sin

)

(

2

T

n

tdt

n

t

f

T

j

C

w


oleObject196.bin

image203.wmf
ú

û

ù

ê

ë

é

ò

-

2

/

0

0

)

(

Im

2

T

t

jn

dt

e

t

f

T

j

w


oleObject197.bin

image204.wmf
n

a

a

=

=

0

0


oleObject198.bin

oleObject17.bin

image205.wmf
ò

=

2

/

 

0

0

sin

)

(

4

T

n

tdt

n

t

f

T

b

w


oleObject199.bin

image206.wmf
)

(

t

f


oleObject200.bin

image207.wmf
)

2

/

(

-

)

(

T

t

f

t

f

+

=


oleObject201.bin

image208.wmf
)

2

/

(

-

)

(

T

t

f

t

f

-

=


oleObject202.bin

image209.wmf
ò

=

-

2

/

 

 

0

 

0

 

)

(

   

2

T

t

jn

n

dt

e

t

f

T

C

w


oleObject203.bin

image18.wmf
=

=

ò

+

2

 

cos

0

 

 

2

0

0

T

dt

t

n

T

t

t

w


image210.wmf
0

=

n

C


oleObject204.bin

image211.wmf
+

=

ò

-

2

/

 

 

0

 

 

 

)

(

1

0

T

t

jn

n

dt

e

t

f

T

C

w


oleObject205.bin

image212.wmf
ò

-

T

T

t

jn

dt

e

t

f

T

 

2

/

 

 

 

)

(

1

0

w


oleObject206.bin

image213.wmf
,

2

/

T

t

t

-

=

¢


oleObject207.bin

image214.wmf
ò

¢

+

¢

+

¢

-

2

/

 

 

0

 

)

2

/

(

 

 

)

2

/

(

1

0

T

T

t

jn

t

d

e

T

t

f

T

w


oleObject208.bin

oleObject18.bin

image215.wmf
t

¢


oleObject209.bin

image216.wmf
t


oleObject210.bin

image217.wmf
p

w

n

T

n

=

2

0


oleObject211.bin

image218.wmf
ò

-

-

-

2

/

 

 

0

 

0

 

)

(

1

T

jn

t

jn

dt

e

e

t

f

T

p

w


oleObject212.bin

image219.wmf
1

-

=

-

p

jn

e


oleObject213.bin

image19.wmf
dt

t

n

T

t

t

 

sin

0

 

 

2

0

0

w

ò

+


image220.wmf
,

n


oleObject214.bin

image221.wmf
1

+

=

-

p

jn

e


oleObject215.bin

image222.wmf
n


oleObject216.bin

image223.wmf
0

0

=

a


oleObject217.bin

image224.wmf
n

n

b

a

=

=

0


oleObject218.bin

oleObject19.bin

oleObject219.bin

oleObject220.bin

image225.emf
Figure 9.3.1

f

tr

(t)

t

A

m

- A

m

T

-T/2

T/2


image226.wmf
0

0

=

a


oleObject221.bin

image227.wmf
0

=

n

a


oleObject222.bin

image228.wmf
0

=

n

b


oleObject223.bin

image229.wmf
ò

=

4

/

 

0

0

sin

)

(

8

T

n

dt

n

t

f

T

b

w


image20.wmf
0

a


oleObject224.bin

image230.wmf
0

0

=

a


oleObject225.bin

image231.wmf
0

=

n

b


oleObject226.bin

image232.wmf
0

=

n

a


oleObject227.bin

image233.wmf
ò

=

4

/

 

0

0

)co

(

8

T

n

tdt

sn

t

f

T

a

w


oleObject228.bin

image234.wmf
tdt

n

t

f

T

T

0

 

0

 

sin

 

)

(

2

w

ò


oleObject20.bin

oleObject229.bin

image235.wmf
tdt

n

t

f

T

T

0

 

0

 

cos

 

)

(

2

w

ò


oleObject230.bin

image236.wmf
dt

t

f

T

T

 

)

(

1

 

0

 

ò


oleObject231.bin

image237.wmf
ò

2

/

 

0

0

cos

)

(

4

T

tdt

n

t

f

T

w


oleObject232.bin

image238.wmf
ò

2

/

 

0

)

(

2

T

dt

t

f

T


oleObject233.bin

image239.wmf
tdt

n

t

f

T

T

0

2

/

 

0

 

sin

 

)

(

4

w

ò


image21.wmf
å

ò

å

ò

ò

ò

¥

=

+

¥

=

+

+

+

+

+

=

1

 

 

0

1

 

 

0

 

 

0

 

 

0

0

0

0

0

0

0

0

 

sin

 

cos

 

 

)

(

k

T

t

t

k

k

T

t

t

k

T

t

t

T

t

t

dt

t

k

b

dt

t

k

a

dt

a

dt

t

f

w

w


oleObject234.bin

image240.wmf
tdt

n

t

f

T

T

0

2

/

 

0

 

sin

 

)

(

4

w

ò


oleObject235.bin

image241.wmf
tdt

n

t

f

T

T

0

2

/

 

0

 

cos

 

)

(

4

w

ò


oleObject236.bin

image242.wmf
tdt

n

t

f

T

T

0

4

/

 

0

 

cos

 

)

(

8

w

ò


oleObject237.bin

image243.wmf
tdt

n

t

f

T

T

0

4

/

 

0

 

sin

 

)

(

8

w

ò


oleObject238.bin

image244.emf
 

Figure 9.3.2

f

tr

(t)

t

A

m

-A

m

T

-T/2

T/2

-T/4

T/4


oleObject21.bin

image245.wmf
,

4

/

0

T

t

£

£


oleObject239.bin

image246.wmf
(

)

.

4

/

4

)

(

T

t

T

A

t

f

m

tr

-

=


oleObject240.bin

image247.wmf
(

)

dt

t

n

T

t

T

A

T

a

T

m

n

 

cos

 

4

/

 

4

8

0

4

/

 

0

 

w

-

=

ò


oleObject241.bin

image248.wmf
ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

-

ò

-

/4

0

2

0

4

Re

32

T

t

jn

m

dt

e

T

t

T

A

w


oleObject242.bin

image249.wmf
=

ú

û

ù

ê

ë

é

-

-

+

-

=

-

-

-

4

/

0

0

2

0

0

2

)

(

4

)

(

Re

32

0

0

0

T

t

jn

t

jn

t

jn

m

n

jn

e

T

n

e

jn

te

T

A

a

w

w

w

w

w

w


oleObject243.bin

image22.wmf
0

0

0

+

+

=

T

a


image250.wmf
2

2

2

0

2

8

)

(

32

n

A

n

T

A

m

m

p

w

-

=

-


oleObject244.bin

image251.wmf
,

8

)

(

32

2

2

2

0

2

n

A

n

T

A

a

m

m

n

p

w

-

=

-

=


oleObject245.bin

image252.wmf
n


oleObject246.bin

image253.wmf
)

(

t

f


oleObject247.bin

image254.wmf
÷

ø

ö

ç

è

æ

+

+

+

-

=

...

t

t

t

A

t

f

m

tr

0

0

0

2

5

cos

25

1

3

cos

9

1

cos

8

)

(

w

w

w

p


oleObject248.bin

oleObject22.bin

image255.emf
-T T

-T/2 T/2

-T/4 T/4

f

hw

(t)

A

t

(a)


image256.emf
Figure 9.4.1

-T T -T/2 T/2

A

t

f

fw

(t)

(b)


image257.emf
(a)

-T T

-T /2 T /2

A

t


image258.wmf
A


oleObject249.bin

image259.wmf
T


oleObject250.bin

image260.emf
   

(b)

-

T T

-

T

/2

T

/2

1

t

Figure 9.4.2


image261.wmf
.

2

/

1

=

a


oleObject251.bin

image23.wmf
dt

t

f

T

a

T

t

t

 

)

(

1

0

0

 

 

0

ò

+

=


image262.wmf
+

î

í

ì

ê

ë

é

-

+

=

t

t

t

A

t

f

hw

0

0

0

3

cos

3

1

cos

2

2

1

cos

)

(

w

w

p

w


oleObject252.bin

image263.wmf
þ

ý

ü

ú

û

ù

+

-

...

7

cos

7

1

5

cos

5

1

0

0

t

t

w

w


oleObject253.bin

image264.wmf
(

-

+

+

=

cos0

cos2

cos

2

0

0

t

A

t

A

w

p

w


oleObject254.bin

image265.wmf
-

t

0

4

cos

3

1

w


oleObject255.bin

image266.wmf
+

+

t

t

0

0

6

cos

5

1

2

cos

3

1

w

w


oleObject256.bin

oleObject23.bin

image267.wmf
÷

ø

ö

+

-

-

...

t

t

t

0

0

0

cos16

7

1

cos8

7

1

cos4

5

1

w

w

w


oleObject257.bin

image268.wmf
ç

è

æ

+

+

-

+

+

=

...

t

t

t

A

t

A

A

0

0

0

0

cos6

35

1

cos4

15

1

cos2

3

1

2

cos

2

w

w

w

p

w

p


oleObject258.bin

image269.wmf
÷

÷

ø

ö

+

-

-

+

+

...

t

n

n

n

0

2

1

2

cos

1

4

)

1

(

w


oleObject259.bin

image270.wmf
A

2


oleObject260.bin

image271.wmf
t

A

0

cos

w

-


oleObject261.bin

image24.wmf
0

a


oleObject262.bin

image272.wmf
÷

÷

ø

ö

+

-

-

+

ç

è

æ

-

+

-

+

=

+

...

2

cos

1

4

)

1

(

...

cos6

35

1

cos4

15

1

cos2

3

1

4

2

0

2

1

0

0

0

t

n

n

t

t

t

A

A

n

w

w

w

w

p

p


oleObject263.bin

image273.wmf
0

2

2

2

w

p

=

´

T


oleObject264.bin

image274.wmf
0

0

2

w

w

=

¢


oleObject265.bin

image275.wmf
0

w

¢


oleObject266.bin

image276.wmf
t

0

cos

w


oleObject24.bin

oleObject267.bin

image277.wmf
C

t

t

t

A

dt

t

f

m

sqd

¢

+

ú

û

ù

ê

ë

é

+

+

+

-

=

ò

...

cos5

25

1

cos3

9

1

cos

4

 

)

(

0

0

0

0

w

w

w

pw


oleObject268.bin

image278.wmf
C

¢


oleObject269.bin

image279.wmf
,

C

0

=

¢


oleObject270.bin

image280.wmf
)

(

t

f

tr


oleObject271.bin

image281.wmf
.

2

2

mtr

msq

A

T

A

=

´


image25.wmf
)

(

t

f


oleObject272.bin

image282.wmf
,

8

4

4

4

2

0

0

p

pw

pw

mtr

mtr

msq

A

T

A

A

=

´

=


oleObject273.bin

image283.wmf
,

n

m

1

1

+


oleObject274.bin

image284.wmf
...,

 

2,

 

1,

 

,

0

=

m


oleObject275.bin

image285.emf
Figure 9.6.1

R

2

R

1

C

2

v

I

v

O

+

–

+

–


image286.wmf
I

v


oleObject276.bin

oleObject25.bin

image287.wmf
å

+

+

=

¥

=

1

0

0

)

cos(

n

n

n

I

t

n

V

V

v

q

w


oleObject277.bin

image288.wmf
In

On

V

V


oleObject278.bin

image289.wmf
(

)

(

)

(

)

2

1

2

0

2

1

2

2

0

2

1

2

0

2

||

1

1

/

1

||

/

1

||

R

R

C

jn

R

R

R

C

jn

R

R

C

jn

R

w

w

w

+

+

=

+

=


oleObject279.bin

image290.wmf
I

O

V

R

R

R

V

2

1

2

+

=


oleObject280.bin

image291.wmf
(

)

[

]

2

2

1

2

0

2

1

2

||

1

1

R

R

C

n

R

R

R

w

+

+


oleObject281.bin

image26.wmf
,

n

a


image292.wmf
(

)

.

 

||

tan

2

1

2

0

-1

R

R

C

n

w


oleObject282.bin

image293.wmf
(

)

[

]

[

å

-

+

+

+

+

+

=

¥

=

1

0

2

2

1

2

0

2

1

2

0

2

1

2

cos

||

1

1

)

(

n

n

n

O

t

n

V

R

R

C

n

R

R

R

V

R

R

R

t

v

q

w

w


oleObject283.bin

image294.wmf
]

 

R

R

C

n

)

||

(

tan

2

1

2

0

-1

w


oleObject284.bin

image295.emf
Figure 9.6.2

R

C

v

I

v

O

+

–

+

–


image296.wmf
m

A


oleObject285.bin

image297.wmf
m

V


oleObject26.bin

oleObject286.bin

image298.wmf
,

2

¥

®

R


oleObject287.bin

image299.wmf
,

1

R

R

=


oleObject288.bin

image300.wmf
,

2

C

C

=


oleObject289.bin

image301.wmf
(

)

2

0

1

1

CR

n

w

+


oleObject290.bin

image302.wmf
.

 

tan

0

-1

CR

n

w


image27.wmf
t

n

o

w

cos


oleObject291.bin

image303.wmf
(

)

(

)

å

¥

=

+

-

=

5,...

     

3,

 

,

1

2

0

0

,

1

sin

4

n

n

m

O

CR

n

n

t

n

V

v

w

b

w

p


oleObject292.bin

image304.wmf
CR

n

0

tan

w

b

=


oleObject293.bin

image305.wmf
I

v


oleObject294.bin

image306.wmf
å

+

+

=

¥

=

1

0

0

)

cos(

n

vn

n

I

t

n

V

V

v

q

w


oleObject295.bin

image307.wmf
I

i


oleObject27.bin

oleObject296.bin

image308.wmf
å

+

+

=

¥

=

1

0

0

)

cos(

n

in

n

I

t

n

I

I

i

q

w


oleObject297.bin

image309.wmf
ò

+

=

T

t

t

I

I

dt

i

v

T

P

0

0

 

 

1


oleObject298.bin

image310.wmf
.

n


oleObject299.bin

image311.wmf
(

)

(

)

dt

t

n

t

n

I

V

T

I

V

T

P

n

T

t

t

in

vn

n

n

T

t

t

 

cos

 

cos

1

1

1

0

0

0

0

0

0

0

0

å

ò

¥

=

+

+

+

+

+

=

q

w

q

w


oleObject300.bin

image312.wmf
(

)

(

)

[

]

dt

t

n

I

V

T

I

V

n

T

t

t

in

vn

in

vn

n

n

 

 

2

cos

cos

2

1

1

0

0

0

0

0

å

ò

¥

=

+

-

-

+

-

+

=

q

q

w

q

q


image28.wmf
å

ò

ò

ò

¥

=

+

+

+

+

+

=

1

 

 

0

0

0

 

 

0

0

 

 

0

0

0

0

0

0

 

cos

 

cos

cos

 

 

cos

 

)

(

k

T

t

t

k

T

t

t

T

t

t

dt

t

n

ω

t

k

a

tdt

n

ω

a

dt

t

n

ω

t

f

w


oleObject301.bin

image313.wmf
(

)

(

)

å

-

+

å

=

-

+

=

¥

=

¥

=

1

rms

rms

0

0

1

0

0

cos

 

cos

2

n

in

vn

n

n

n

in

vn

n

n

I

V

I

V

I

V

I

V

P

q

q

q

q


oleObject302.bin

image314.wmf
,

rms

F


oleObject303.bin

image315.wmf
)

(

t

f


oleObject304.bin

image316.wmf
[

]

ò

=

+

T

t

t

dt

t

f

T

F

0

0

 

)

(

1

2

rms


oleObject305.bin

image317.wmf
)

(

t

f


oleObject28.bin

oleObject306.bin

image318.wmf
(

)

ò

å

+

¥

=

ú

û

ù

ê

ë

é

+

+

=

T

t

t

n

n

n

dt

t

n

c

c

T

F

0

0

 

cos

1

2

1

0

0

2

rms

q

w


oleObject307.bin

image319.wmf
(

)

[

]

ò

å

+

¥

=

+

-

+

=

T

t

t

n

n

n

dt

t

n

c

T

c

0

0

1

0

2

2

0

sin2

1

2

1

q

w


oleObject308.bin

image320.wmf

oleObject309.bin

image321.wmf
å

+

=

¥

=

1

2

2

0

2

n

n

c

c


oleObject310.bin

image322.wmf
å

+

=

¥

=

1

2

2

0

rms

2

n

n

c

c

F


image29.wmf
0

2

0

 

cos

 

sin

1

 

 

0

0

0

0

+

+

=

å

ò

¥

=

+

n

k

T

t

t

k

a

T

dt

t

n

ω

t

k

b

w


oleObject311.bin

oleObject312.bin

image323.wmf
a


oleObject313.bin

image324.wmf
(

)

å

¥

=

+

+

=

1

2

2

2

0

rms

2

n

n

n

b

a

a

F


oleObject314.bin

image325.wmf
v


oleObject315.bin

image326.wmf
,

R


oleObject316.bin

oleObject29.bin

image327.wmf
rms

n

I


oleObject317.bin

image328.wmf
rms

n

V


oleObject318.bin

image329.wmf
.

rms

rms

R

V

I

n

n

=


oleObject319.bin

image330.wmf
vn

in

q

q

=


oleObject320.bin

image331.wmf
R

V

V

V

R

P

n

nrms

2

rms

1

2

2

0

 

1

=

ú

û

ù

ê

ë

é

å

+

=

¥

=


oleObject321.bin

image30.wmf
dt

t

n

t

f

T

a

T

t

t

n

 

cos

 

)

(

2

0

 

 

0

0

w

ò

+

=


image332.wmf
R

I

I

I

R

P

n

nrms

2

rms

1

2

2

0

 

=

ú

û

ù

ê

ë

é

å

+

=

¥

=


oleObject322.bin

image333.wmf
)

(

t

f


oleObject323.bin

image334.wmf
ò

-

=

2

/

2

/

2

0

0

2

2

.

4

)

(

 

)

(

cos

2

p

p

w

w

p

A

t

d

t

A


oleObject324.bin

image335.wmf
.

A

2


oleObject325.bin

image336.wmf
p

A


oleObject326.bin

oleObject30.bin

image337.wmf
.

 

2

2

rms

2

AC

A

A

A

+

÷

ø

ö

ç

è

æ

=

p


oleObject327.bin

image338.wmf
=

÷

ø

ö

ç

è

æ

-

=

2

rms

2

1

2

p

A

A

AC


oleObject328.bin

image339.emf
Figure 9.7.1

f (t)

t

A

T




image340.wmf
)

(

t

f


oleObject329.bin

image341.wmf
,

t

t

£

£

0


oleObject330.bin

image342.wmf
.

t

A

t

f

t

=

)

(


image31.wmf
,

n

b


oleObject331.bin

image343.wmf
,

t

A

2

2

÷

ø

ö

ç

è

æ

t


oleObject332.bin

image344.emf
f

1

(t)

t

A

T-



Figure 9.7.2


image345.wmf
ò

=

÷

ø

ö

ç

è

æ

=

÷

ø

ö

ç

è

æ

t

t

t

t

t

0

2

3

2

2

2

3

3

 

A

A

dt

t

A


oleObject333.bin

image346.wmf
,

T

t

£

£

t


oleObject334.bin

image347.wmf
)

(

1

t

f


oleObject335.bin

oleObject31.bin

image348.wmf
3

)

(

2

t

-

T

A


oleObject336.bin

image349.wmf
T

t

£

£

t


oleObject337.bin

image350.wmf
)

(

t

f


oleObject338.bin

image351.wmf
.

T

A

3

2


oleObject339.bin

image352.wmf
,

A

3

2


oleObject340.bin

image32.wmf
t

n

o

w

sin


image353.wmf
.

A

3


oleObject341.bin

image354.wmf
0


oleObject342.bin

image355.wmf
A


oleObject343.bin

image356.wmf
).

 

or

  

0,

(

T

=

=

t

t


oleObject344.bin

oleObject345.bin

image357.wmf
.

A

T

A

A

T

2

2

)

(

2

1

=

ú

û

ù

ê

ë

é

-

+

t

t


oleObject32.bin

oleObject346.bin

image358.wmf
,

F

AC

rms


oleObject347.bin

image359.wmf
.

F

A

A

AC

2

rms

2

2

3

+

÷

ø

ö

ç

è

æ

=


oleObject348.bin

image360.wmf
=

rms

AC

F


oleObject349.bin

image361.wmf
.

A

A

A

3

2

12

4

1

3

1

=

=

-


oleObject350.bin

image33.wmf
å

ò

ò

ò

¥

=

+

+

+

+

+

=

1

 

 

0

0

0

 

 

0

0

 

 

0

0

0

0

0

0

 

sin

 

cos

sin

 

 

sin

 

)

(

k

T

t

t

k

T

t

t

T

t

t

dt

t

n

ω

t

k

a

tdt

n

ω

a

dt

t

n

ω

t

f

w


oleObject33.bin

image34.wmf
n

k

T

t

t

k

b

T

dt

t

n

ω

t

k

b

2

0

0

 

sin

 

sin

1

 

 

0

0

0

0

+

+

=

å

ò

¥

=

+

w


oleObject34.bin

image35.wmf
dt

t

n

t

f

T

b

T

t

t

n

 

sin

 

)

(

2

0

 

 

0

0

w

ò

+

=


oleObject35.bin

image36.wmf
,

0

T

t

<

£


oleObject36.bin

image1.wmf
)

(

t

f


image37.wmf
.

)

(

t

T

A

t

f

st

=


oleObject37.bin

image38.emf
Figure 9.2.1

f

st

(t)

t

-T

A

T

2T


image39.wmf
ò

=

ú

û

ù

ê

ë

é

=

=

T

T

A

t

T

A

tdt

T

A

T

a

0

0

2

2

0

2

2

1


oleObject38.bin

image40.wmf
ò

ò

=

=

T

T

n

tdt

n

t

T

A

dt

n

t

T

A

T

a

0

0

2

0

0

cos

2

cos

2

w

w


oleObject39.bin

image41.wmf
0

sin

cos

1

2

0

/

2

0

0

0

0

2

0

2

2

=

ú

û

ù

ê

ë

é

+

=

w

p

w

w

w

w

t

n

n

t

t

n

n

T

A

a

n


oleObject40.bin

image42.wmf
ò

ò

=

=

T

T

n

tdt

n

t

T

A

dt

n

t

T

A

T

b

0

0

2

0

0

sin

2

sin

2

w

w


oleObject1.bin

oleObject41.bin

image43.wmf
0

/

2

0

0

0

0

2

0

2

2

cos

sin

1

2

w

p

w

w

w

w

ú

û

ù

ê

ë

é

-

=

t

n

n

t

t

n

T

A


oleObject42.bin

image44.wmf
n

A

n

T

A

p

w

p

-

=

ú

û

ù

ê

ë

é

-

=

2

0

2

2

2


oleObject43.bin

image45.wmf
ú

û

ù

ê

ë

é

+

+

+

-

=

-

=

å

¥

=

...

t

t

t

A

A

n

t

n

A

A

t

f

n

st

3

3

sin

2

2

sin

sin

2

sin

2

)

(

0

0

0

1

0

w

w

w

p

w

p


oleObject44.bin

image46.wmf
)

(

+

kT

f


oleObject45.bin

image47.wmf
)

(

-

kT

f


